About Sabine Ott

This author has not yet filled in any details.
So far Sabine Ott has created 67 blog entries.

Erneuerbare Fernwärme 2020

2019-06-12T13:42:51+02:00Jun 12th, 2019|

Erneuerbare Fernwärme 2020

Das multifunktionale Fernwärmenetz als Wärmedrehscheibe

Projektthema

  • Speicher
  • Solarthermie
  • Energieversorgung
  • Nah- und Fernwärme

Aufgabe

  • Beratung
  • Studie
  • Wissenstransfer
  • Entwicklung
  • Forschung
  • Pilotprojekte

Förderung

  • Öffentliche Hand

Projektdauer

10/2017 – 09/2022 (5 Jahre)

Gesamtbudget

3,8 Mio. EUR

Projektbeschreibung

Bis zum Jahr 2022 soll der Anteil CO2-neutraler Wärme an der Fernwärmeversorgung der Stadt Hennigsdorf von 50 auf über 80 % erhöht werden. Dafür wird die Abwärme des örtlichen Stahlwerks, Solarthermie und Power-to-Heat aus regenerativem Überschussstrom in das Wärmenetz eingebunden und ein Multifunktions-Wärmespeicher realisiert.

Auftraggeber

BMWi

Partner

  • Kraftwerks- und Projektentwicklungsgesellschaft mbH & Co KG
  • Stadtwerke Hennigsdorf GmbH
  • Ruppin Consult GmbH
  • Steinbeis Forschungsinstitut Solites
  • tetra ingenieure GmbH

Ziel

Mit einem Klimaschutzrahmenkonzept wurde im Jahr 2015 die nachhaltige Fernwärmeversorgung der Stadt Hennigsdorf beschlossen. Der CO2-neutrale und regenerative Anteil an der Wärmeversorgung soll mit den folgenden Schritten auf über 80 % erhöht werden:

  • Abwärmenutzung aus dem örtlichen Stahlwerk
  • Ausbau der solarthermischen Wärmeerzeugung (zentral und dezentral)
  • Power-to-Heat aus regenerativem Überschussstrom (Vorhaben WindNODE Schaufenster der Energiewende)
  • Erschließung aller Optimierungspotentiale in den Abnehmeranlagen und im Fernwärmenetz
  • Abbau von Altanlagen, die mit Heizöl oder Anthrazit befeuert werden
  • Errichtung eines Multifunktions-Wärmespeichers mit 22.000 m³ und eines Pufferspeichers mit 1.000 m³ Wasservolumen

Umsetzung

In dem vorhergehenden durch das BMWi geförderten Projekt “Wärmedrehscheibe Phase 1” wurde ein Konzept mit den wissenschaftlich-technischen Grundlagen für die Optimierung der Fernwärmeversorgung und den Ausbau einer nahezu vollständig CO2-neutralen Versorgung erarbeitet. Dieses Konzept wird nun durch das Konsortium schrittweise in die konkrete Planung überführt und mit ausführenden Firmen umgesetzt. Dabei werden in dem Verbundvorhaben die Umsetzung der innovativen technischen Anlagen und Baumaßnahmen einerseits und die wissenschaftliche Begleitung andererseits gefördert.

Solites hat die Rolle der wissenschaftlichen Begleitung und Evaluierung und erarbeitet darüber hinaus am Beispiel der Stadt Hennigsdorf allgemeingültige wissenschaftliche Grundlagen, die in der Folge auf die Fernwärmeversorgung anderer Städte übertragen werden können.

Ergebnisse

Im Frühsommer 2019 wurde die Nutzung der Abwärme aus dem Stahlwerk erfolgreich realisiert. Dazu wurde ein neues Heizwerk “Nord 2” gebaut, über das die Abwärme in das Fernwärmenetz transportiert wird.

Downloads und Links
www.swh-online.de/erneuerbare-fernwaerme-2020/

Kontakt
Dirk Mangold
mangold@solites.de
Magdalena Berberich
berberich@solites.de

Dieses Projekt wird gefördert durch

Die alleinige Verantwortung für den Inhalt dieser Website liegt bei den Autoren. Sie gibt nicht unbedingt die Meinung der Fördermittelgeber wieder. Weder die Autoren noch die Fördermittelgeber übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen.

SolnetBW II

2019-07-17T14:36:59+02:00Jun 12th, 2019|

SolnetBW II

Solnet.BW – Solar District Heating Networks in Baden-Württemberg

Subject

  • Solar thermal energy
  • Storage
  • District heating
  • Market & policy
  • Energy concept

Task

  • Study
  • Consulting
  • Technology transfer
  • Knowledge transfer
  • Pilot project
  • Market development

Funding

  • Public funding

Period

04/2017 – 03/2019 (2 years)

Budget

about 700.000 EUR

Description

The state of Baden-Württemberg has ambitious goals regarding the energy transition in the heating and cooling sector. In front of this policy framework, the SolnetBW II project aims at an increased use of solar district heating in Baden-Württemberg. In particular, district heating is considered as heat supply infrastructure, which is flexible with regard to the integration of renewable energy sources and other future heat generation technologies.

Client

Funding programme “Trafo BW” of the state of Baden-Württemberg

Partner

  • Steinbeis Research Institute Solites (DE)
  • German Heat and Power Association AGFW (DE)
  • Hamburg Institute Research (DE)
  • University of Stuttgart – Institute of Energy Economics and Rational Energy Use (DE)
  • KEA Climate Protection and Energy Agency of Baden-Württemberg (DE)

Aim

The project aims at promoting and increasing the use of solar district heating in Baden-Württemberg. It addresses market obstacles and opportunities, for which efficient solutions and instruments are developed and made available to market stakeholders.

Implementation

In five living labs in Baden-Württemberg, the project partners will cooperate with market stakeholders in order to address following topics:

  • availability of land areas
  • market opportunities for solar district heating with large heat storage and sector coupling technologies
  • solar district heating in the wider energy economics framework
  • initiation and extension of district heating networks as precondition for the integration of large solar thermal plants

In parallel project communication, dissemination and transfer activities are carried out.

Results

The project delivers solutions and instruments for the above listed topics and obstacles. Examples are criteria for ecological area concepts, model contracts for business cases, an online tool for interested stakeholder guiding to the best solar district heating solution and business cases for solar district heating systems with large heat storages. These results will be made available to market stakeholders. Furthermore, communication and information events will be organized.

The Solnet.BW II project aims at promoting and increasing the use of solar district heating in Baden-Württemberg.

Downloads and links
www.solnetbw.de

Contact
Thomas Pauschinger
pauschinger@solites.de

This Project has received funding from

The sole responsibility for the content of this webpage lies with the authors. It does not necessarily reflect the opinion of the funding organization. Neither the funding organization nor the author are responsible for any use that may be made of the information contained thereinin.

DELFIN

2019-12-20T13:32:55+01:00Apr 15th, 2019|

DELFIN (Decentralized Feed-In)

Predicting the effects of decentralized integration of heat from renewable energy sources and other heat generators into district heating networks

Subject

  • Solar thermal energy
  • District heating
  • Storage
  • Decentralized feed-in

Task

  • Research

Funding

  • Public funds

Period

06/2016 – 06/2019 (3 years)

Budget

1.37 m. EUR

Description

DELFIN carries on the work started in the “Dezentral” project. DELFIN focuses on the impacts of the connection of decentralized renewable plants on the operation of district heating networks.

Client

Federal Ministry for Economic Affairs and Energy

Partner

  • AGFW – German Energy Efficiency Association for Heating, Cooling and CHP (coordinator)
  • Steinbeis Research Institute Solites
  • TUD – Technical University of Dresden, Institute of Power Engineering, Chair of Building Energy Systems and Heat Supply

Aim

The main goal of the DELFIN project is the development of tools to calculate the changes in the thermo-hydraulic behaviour of district heating grids due to the connection of volatile, decentral connected heat producers  in adapted simulation environments in order to derive guidelines for operators. The impact on the existing heat producers and on the components (pumps, pressure, pipes) as well as the effect of different storage locations is reflected realistically.

Implementation

The project focuses on decentralized feed-in of heat into district heating networks. The first step of the research work is to modell or simulate volatile suppliers. The models and profiles developed characterize the variability of the practically relevant values over time, e. g. the mass flow rate and temperature of the heat feed into district heating networks. These models are then coupled to different simulation models for district heating systems. This way, the current and future effects of increasing numbers of decentralized heat sources can be assessed.

On the basis of existing district heating networks, these effects are modelled under different climate conditions. Via simulation studies, the effects on (primary) energy consumptions and the technical boundary conditions can be identified and sensible storage integration solutions proposed. The analysis comprises also an evaluation of the impact on the system efficiency and gives indicators on the economics of the district heating systems.

Results

The simulation tools and models used in the analysis have been tested in practical cases, or tested with data from existing plants (regarding the starting situation). An independent project comittee from the district heating branch ensures that practical aspects are taken into account in the research work.

The results of this research project can be transferred by district heating operators to their own situation and applied there. Selected simulation modules will be available for free in the future.

This project has received funding from

The sole responsibility for the content of this webpage lies with the authors. It does not necessarily reflect the opinion of the funding organization. Neither the funding organization nor the author are responsible for any use that may be made of the information contained therein.

EWS-tech II

2019-05-07T09:41:44+02:00Apr 15th, 2019|

EWS-tech II

Development of verifiable quality criteria for borehole heat exchanger groutings under realistic boundary conditions

Subject

  • Geothermal

Task

  • Research
  • Development
  • Knowledge transfer

Funding

  • Public funds

Period

04/2016 – 12/2019 (3.75 years)

Budget

2.1 m. EUR

Description

Within the joint research project EWS-tech II examinations on the grouting quality of borehole heat exchangers (BHE) are carried out. These examinations result in a recommendation catalog for grouting materials that can e.g. be used by legislators or grouting material manufacturers.

Client

Ministry of the Environment, Climate Protection and the Energy Sector of Baden-Württemberg

Partner

  • Steinbeis Research Institute Solites
  • Karlsruhe Institute of Technology (KIT) – Institute of Applied Geosciences (AGW)
  • Karlsruhe Institute of Technology (KIT) – Materials Testing and Research Institute (MPA Karlsruhe)
  • EIFER (European Institute for Energy Research)

Aim

  • Assessment of the behavior of BHE grouting materials in boreholes with groundwater flow. The focus of these examinations lies on boreholes that connect aquifers with different pressure potentials.
  • Evaluation of the influence of the roughness of the borehole wall on the system permeability, taking into account the interaction between different grouting materials, wall topographies and groundwater flows.
  • Advantages and disadvantages as well as limits of application of magnetite doped grouting materials and evaluation of the associated geophysical measuring methods
  • Long term integrity of grouted BHE

Implementation

In order to achieve the objectives, various complementary test setups are used by the project partners. In the planned experiments, four magnetically doped grouting materials with different rheological properties, that are newly developed by the project partner MPA Karlsruhe (KIT), will be used to investigate the relationship between the rheological properties and the grouting quality.

One of Solites’ key work packages is the visualization of the grouting and hardening process of six meter high geothermal borehole heat exchangers in the presence of different groundwater flows. A transparent borehole is used for these experiments. In addition, real-scale experiments are performed to proof the validity of the six meter tests for real-scale conditions.

The experimental procedures also include the use of automatic grouting control based on magnetic susceptibility measurements.

Results

The main result of the research project is a recommendation catalog for borehole heat exchanger grouting materials. This catalog includes:

  • Requirement criteria for BHE grouting materials (also with regard to the magnetic doping)
  • Recommendations on the grouting technique in the case of boreholes that penetrate one or more groundwater layers
  • Assessment of the detection limits and validity of automatic grouting control methods

This project has received funding from

The sole responsibility for the content of this webpage lies with the authors. It does not necessarily reflect the opinion of the funding organization. Neither the funding organization nor the author are responsible for any use that may be made of the information contained therein.

gigaTES

2019-08-05T15:15:26+02:00Apr 15th, 2019|

gigaTES

Giga-Scale Thermal Energy Storage for Renewable Districts

Subject

  • Storage
  • Solar thermal energy
  • Energy supply
  • District heating
  • Energy concept

Task

  • Consulting
  • Technology transfer
  • Knowledge transfer
  • Development
  • Research

Funding

  • Public funds

Period

01/2018 – 12/2020 (3 years)

Budget

3.3 m. EUR

Description

The Austrian lead project gigaTES aims at developing giga-scale storage concepts for urban districts with integrating large shares of renewables focusing on Austrian implementations.

Client

Austrian Climate and Energy Fund

Partner

  • AEE INTEC – Institut für Nachhaltige Technologien (AT) (Koordinator)
  • Steinbeis Research Institute Solites (DE)
  • S.O.L.I.D. Gesellschaft für Solarinstallation und Design mbH (AT)
  • Johannes Kepler Universität – Institute of Polymeric Materials and Testing (AT)
  • Universität Innsbruck – Institut für Konstruktion und Materialwissenschaften, AT
  • Ingenieurbüro ste.p ZT-GmbH (AT)
  • AGRU Kunststofftechnik GmbH (AT)
  • Metawell GmbH (DE)
  • Bilfinger VAM Anlagentechnik GmbH (AT)
  • Geologie und Grundwasser GmbH (AT)
  • PORR Bau GmbH Tiefbau (AT)
  • Lenzing Plastics GmbH (AT)
  • PlanEnergi (DK)
  • Gabriel-Chemie Gesellschaft mbH (AT)
  • Smart Minerals GmbH (AT)
  • Wien Energie GmbH (AT)
  • Salzburg AG (AT)
  • GVT Verfahrenstechnik GmbH (AT)

Aim

  • Comprehensive overview of requirements and challenges for application and installation of giga-scale heat storages
  • Development of innovative and optimal construction methods for giga-scale heat storages
  • Elaboration of economically viable solutions for critical storage components such as base plate, liner and cover
  • Development of novel polymeric and anorganic materials for the construction of large-scale heat storages
  • Development of simulation models considering different modelling depths, validation and application of the models for optimising the construction in respect to relevant boundary conditions
  • Assessment of the additional benefit and importance of large-scale storages in respect to existing and future district heating networks

Implementation

The project is structured in the following major workpackages:
  • Development of components and technologies
  • Materials development and testing
  • Computer aided storage optimisation
  • System integration and storage management
Three Austrian sites will be investigated with respect to the main challenges like construction, geology and geophysics, materials, district heating system and its operating characteristics, economic aspects, public acceptance etc. The three sites will be used as demonstration systems throughout the project.
Solites contributes with experiences from realised projects with large-scale thermal energy storage in Germany and supports the simulation based optimisations and questions of system integration.

Results

  • Categorized and prioritized requirements, challenges and benefits of giga-scale heat storages for at least three Austrian locations representing possible archetypes.
  • Technology concepts for large & deep storage pits within five typical construction grounds (rock/soils, with/without ground water), designs and process technologies for multilayer structures for the bottom, the wall and the cover of giga-scale TES.
  • Novel liner, concrete and metal-sandwich materials with improved temperature capability and lifetime as well as optimized multi-functional property profiles according to the component specific requirements.
  • Detailed 3D TES model accounting for different ground layers, ground water flow, complex geometries, and moisture transport and convection in multi-layer structures at the bottom, the wall or the cover.
  • Simulation framework, application scenarios and operating windows for district heating systems with integrated giga-scale TES.

Downloads and links
www.gigates.at

Contact
Thomas Schmidt
schmidt@solites.de

This project has received funding from

The sole responsibility for the content of this webpage lies with the authors. It does not necessarily reflect the opinion of the funding organization. Neither the funding organization nor the author are responsible for any use that may be made of the information contained therein.

gigaTES

2019-07-24T08:51:16+02:00Apr 15th, 2019|

gigaTES

Giga-Scale Thermal Energy Storage for Renewable Districts

Projektthema

  • Speicher
  • Solarthermie
  • Energieversorgung
  • Nah- und Fernwärme
  • Energiekonzepte

Aufgabe

  • Beratung
  • Studie
  • Entwicklung
  • Pilotprojekte

Förderung

  • Öffentliche Hand

Projektdauer

01/2018 – 12/2020 (3 Jahre)

Gesamtbudget

3,3 Mio. EUR

Projektbeschreibung

Das österreichische Leitprojekt gigaTES zielt darauf ab, Großspeicherkonzepte für Quartiere zur Einbindung hoher Anteile erneuerbarer Energien zu entwickeln, mit Fokus auf realisierbare Umsetzungen in Österreich.

Auftraggeber

Österreichischer Klima- und Energiefonds

Partner

  • AEE INTEC – Institut für Nachhaltige Technologien (AT) (Koordinator)
  • Steinbeis Forschungsinstitut Solites (DE)
  • S.O.L.I.D.Gesellschaft für Solarinstallation und Design mbH (AT)
  • Johannes Kepler Universität – Institute of Polymeric Materials and Testing (AT)
  • Universität Innsbruck – Institut für Konstruktion und Materialwissenschaften (AT)
  • Ingenieurbüro ste.p ZT-GmbH (AT)
  • AGRU Kunststofftechnik GmbH (AT)
  • Metawell GmbH (DE)
  • Bilfinger VAM Anlagentechnik GmbH (AT)
  • Geologie und Grundwasser GmbH (AT)
  • PORR Bau GmbH Tiefbau (AT)
  • Lenzing Plastics GmbH (AT)
  • PlanEnergi (DK)
  • Gabriel-Chemie Gesellschaft mbH (AT)
  • Smart Minerals GmbH (AT)
  • Wien Energie GmbH (AT)
  • Salzburg AG (AT)
  • GVT Verfahrenstechnik GmbH (AT)

Ziel

Folgende Ziele werden durch das Vorhaben verfolgt:

  • Erarbeitung eines umfassenden Überblicks über Erfordernisse und relevante Herausforderungen für den Einsatz und die Umsetzung von Giga-Scale Wärmespeichern
  • Entwicklung von innovativen, bestmöglichen Konstruktionsmethoden für Giga-Scale Wärmespeicher
  • Ausarbeitung wirtschaftlicher und umsetzbarer Lösungen für kritische Speicherkomponenten wie Bodenplatte, Wände und Abdeckung
  • Entwicklung von neuartigen polymeren und anorganischen Materialien für die Konstruktion von Giga-Scale Wärmespeichern
  • Entwicklung einer Methode, um den Anstieg der Boden- und Grundwassertemperaturen abhängig von spezifischen hydrogeologischen Randbedingungen und der Speicherkonstruktion vorherzusagen
  • Bewertung des zusätzlichen Nutzens und der Bedeutung von großen Wärmespeichern in existierenden und zukünftigen Fernwärmenetzen

Umsetzung

Das Projekt ist in die folgenden inhaltlichen Haupt-Arbeitspunkte gegliedert:

  • Entwicklung von Komponenten und Technologien
  • Materialentwicklung und -prüfung
  • Computerunterstützte Speicheroptimierung
  • Systemintegration und Speichermanagement
An drei verschiedenen österreichischen Standorten werden die wichtigsten Herausforderungen wie Baukonstruktion, Geologie und Geophysik, Materialen, Systemeinbindung, Betriebsverhalten, Ökonomie, öffentliche Akzeptanz etc. untersucht. Die drei Standorte werden dem Projekt als Fallstudien zur Verfügung stehen.
Solites bringt die Erfahrungen aus der Realisierung deutscher Großspeicherprojekte in das Projekt ein und unterstützt bei den simulationsbasierten Optimierungen und den Fragestellungen zur Systemeinbindung.

Ergebnisse

  • Kategorisierte und priorisierte Anforderungen, Herausforderungen und Vorteile von Giga-Scale Wärmespeichern für mindestens drei repräsentative österreichische Standorte.
  • Technologiekonzepte für große und tiefe Erdbecken-Wärmespeicher für fünf typische Untergründe (Felsen / Böden, mit / ohne Grundwasser) sowie Planungs- und Prozesstechnologien für mehrschichtige Wandaufbauten für Boden, Wand und Deckel von Giga-Scale Wärmespeichern.
  • Neuartige Auskleidungs-, Beton- und Metall-Sandwich-Materialien mit verbesserter Temperaturbeständigkeit und Lebensdauer sowie optimierte multifunktionale Eigenschaftsprofile entsprechend den komponentenspezifischen Anforderungen.
  • Detailliertes 3D-Wärmespeicher-Modell mit der Möglichkeit zur Berücksichtigung verschiedener Bodenschichten, Grundwasserströmungen, komplexer Geometrien sowie Feuchtigkeitstransport und Konvektion in mehrschichtigen
    Wandaufbauten am Boden, der Wand oder der Abdeckung.
  • Simulationsumgebung, Anwendungs- und Betriebsszenarien für Fernwärmenetze mit integriertem Giga-Scale Wärmespeicher.

Downloads und Links
www.gigates.at

Kontakt
Thomas Schmidt
schmidt@solites.de

Dieses Projekt wird gefördert durch

Die alleinige Verantwortung für den Inhalt dieser Website liegt bei den Autoren. Sie gibt nicht unbedingt die Meinung der Fördermittelgeber wieder. Weder die Autoren noch die Fördermittelgeber übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen.

SolnetBW

2018-11-29T14:42:34+01:00Nov 29th, 2018|

SolnetBW

Solare Wärmenetze Baden-Württemberg

Projektthema

  • Solarthermie
  • Energieversorgung
  • Nah- und Fernwärme
  • Markt & Politik
  • Energiekonzepte

Aufgabe

  • Studie
  • Beratung
  • Technologietransfer
  • Wissenstransfer
  • Pilotprojekte
  • Marktentwicklung

Förderung

  • Öffentliche Hand

Projektdauer

11/2013 – 04/2016 (2,5 Jahre)

Gesamtbudget

ca. 600.000 EUR

Projektbeschreibung

Das Vorhaben SolnetBW zielt auf eine umfassende Marktbereitung für solare Wärmenetze in Baden-Württemberg ab. Solare Wärmenetze sind Wärmeversorgungssysteme, welche Wohn- oder Industriegebiete über große solarthermische Kollektorfelder und Wärmenetze zu Anteilen mit erneuerbarer, emissionsfreier Solarwärme versorgen. In den letzten Jahren zeigt sich europaweit ein zunehmendes Interesse seitens der Stadtwerke und Fernwärmeversorger, aber auch seitens der Kommunen, der Wohnbaubranche und lokaler Energieinitiativen am kommerziellen Einsatz dieser Technologie. In Dänemark erfährt sie aufgrund besonderer Marktbedingungen einen Boom. Experten sehen den Anteil der Solarthermie am Fernwärmeangebot langfristig bei bis zu 15 %. Der AGFW als deutscher Industrieverband für Fernwärme und Kraft-Wärme-Kopplung verfolgt für Deutschland einen Ausbau der Solarthermie in Wärmenetzen bis 2020 mit 800.000 m² Kollektorfläche. Baden-Württemberg kann hierbei eine Vorreiterrolle übernehmen.

Auftraggeber

Programm BWPLUS des Landes Baden-Württemberg

Partner

  • Steinbeis Forschungsinstitut Solites (Koordinator)
  • AGFW – Projektgesellschaft für Rationalisierung, Information und Standardisierung mbH
  • Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung (IER)
  • HIR Hamburg Institut Research gGmbH
  • Klimaschutz- und Energieagentur Baden-Württemberg GmbH

Ziel

Ziel des Vorhabens ist die Unterstützung der Marktentwicklung von solaren Fernwärmesystemen in Baden-Württemberg zum einen durch Verbesserung der politischen, rechtlichen und ökonomischen Randbedingungen und zum anderen durch Maßnahmen zur Markteinführung.

Quantifizierbare Vorhabenziele sind die Initiierung von Neuanlagen in Baden-Württemberg mit einer Leistung von 35 MWth (50.000 m² Kollektorfläche entsprechend einer Investition von ca. 15 Mio. Euro) bis Projektende und, mittelfristig, von 140 MWth (200.000 m² Kollektorfläche entsprechend einer Investition von ca. 60 Mio. Euro) bis zum Jahr 2020.

Umsetzung

Die Umsetzung des Vorhabens gliedert sich in folgende Phasen:

  • Grundlagenermittlung: Analyse der Ausgangssituation und Potenzialermittlung
  • Strategieentwicklung: Identifikation und Analyse potenzieller Entwicklungsansätze für Baden-Württemberg, Entwicklung einer umfassenden Handlungsstrategie und Erarbeitung von Handlungsempfehlungen und eines Aktionsplans, Entwicklung einer Initiative zur Markteinführung
  • Durchführung einer Initiative zur Markteinführung (Zielgruppen sind Umsetzer wie z. B. Kommunen, Versorgungsunternehmen und Initiativen): Erstellung von Materialien, Medien und Kommunikationsinstrumenten für die Marktbearbeitung, Zielgruppenorientierte Veranstaltungen und Verbreitungsaktivitäten, Maßnahmen zur intensivierten anfänglichen Unterstützung von interessierten Umsetzern bei der Entwicklung von Projekten/Pilotprojekten, Förderung von Unternehmen aus Baden-Württemberg auf diesem Sektor (Wissenstransfer), mediale Aufbereitung und Öffentlichkeitsarbeit

Ergebnisse

  • Technische Ausrichtung: Fortentwicklung bisheriger konventioneller Fernwärmekonzepte hin zu umfassenden Systemen nach dänischem Vorbild: Absenkung der Vor- und Rücklauftemperaturen, intelligente Kopplung von Strom- und Wärmeerzeugern über Fernwärmesysteme in Kombination mit großen Wärmespeichern, KWK, Wärmepumpen und großen Solarthermieanlagen.
  • Strategische Ausrichtung: Für die Erreichung des o. g. Ziels sollen (1) die bestehenden rechtlichen, politischen sowie technischen und wirtschaftlichen Rahmenbedingungen analysiert, (2) Empfehlungen zur Verbesserung der genannten Rahmenbedingungen ausgearbeitet und konkrete Vorschläge für rechtliche Vereinfachungen, Geschäftsmodelle und genossenschaftliche Organisationsformen entwickelt werden; schließlich soll (3) dieses erweiterte Wissen zu solaren Wärmenetz-Lösungen an kommunale Entscheidungsträger, Marktakteure und Bürger herangetragen werden.

Das Vorhaben Solnet.BW zielt auf eine umfassende Marktbereitung für solare Wärmenetze in Baden-Württemberg ab.

Downloads und Links

Kontakt
Thomas Pauschinger
pauschinger@solites.de

SWD.SOL

2019-11-20T13:59:10+01:00Nov 28th, 2018|

SWD.SOL

EnEff:Wärme – SWD.SOL – Decentralised heat supply from renewable energies into the CHP based district heating network of the Stadtwerke Düsseldorf AG

Subject

  • Solar thermal energy
  • Buildings
  • Energy supply
  • District heating

Task

  • Development
  • Research
  • Pilot project

Funding

  • Public funds

Period

05/2015 – 04/2018 (3 years)

Budget

312,000 EUR (only Solites)

Description

District heating with heat from efficient combined heat and power (CHP) represents a environmentally friendly method for the heat supply of buildings and industrial processes. In periods with a high electricity production from renewable energies the operation of CHP plants however becomes more and more uneconomic. By existing contracts heat supply is guaranteed and this heat has to be covered by conventional backup boilers then. This is the starting point of the research project. A decentralised feed-in of heat from renewable energy sources can offer a climate-friendly addition to conventional CHP technology. In the framework of this research project especially the technological feasibility will be investigated using the example of a mid-sized solar thermal plant.

So far in Germany there is no example available for a decentralised feed-in of solar heat into a large district heating network. To proof the feasibility a prototype for the combination of a solar thermal system and a district heating substation with a feed-in possibility into the network will be developed. The special challenge here is the consideration of the changing technical conditions of the target network regarding temperature and pressure development.

When the technical requirements are fulfilled, the impact of the decentralised solar heat production on the total system with CHP units, backup boilers, district heating network and user substations will be investigated. Here the focus is given to the following questions: What heat potential could be made accessible? How can solar district heating complements CHP production in a way that primay energy savings and energy efficiency are maximised? What are the economical values for the district heating network operator and the solar plant operator regarding possible business models?

With consideration of these factors the produced solar heat can make an important contribution to primary energy saving and CO2 saving, also in existing district heating networks.

Client

BMWi – Federal Ministry for Economic Affairs and Energy, FKZ 03ET1269C

Partner

  • Steinbeis Research Institute Solites
  • Stadtwerke Düsseldorf AG
  • Rheinwohnungsbau GmbH
  • AGFW (German District Heating Association)
  • Umweltamt Landeshauptstadt Düsseldorf

Aim

The aim of the research project is to demonstrate the technical and economical possibilities of decentralised feed-in of solar heat into district heating networks with a high degree of practical relevance using the example of the Stadtwerke Düsseldorf AG and to show possible developments for the entire district heating sector within the framework of the German energy transition.

The project mainly focuses on technical aspects of a multiple heat feed-in into heating networks. For this novel concepts are applied, innovative components are tested and a monitoring program is conducted for operational optimisation and evaluation.

Implementation

The workplan comprises the following work packages:

  • Basic evaluation and analysis of existing experiences; definition of feed-in concepts to be investigated
  • Test and evaluation of different feed-in concepts
  • Conceptual and operational optimisation of the investigated feed-in concepts based on simulations
  • Concept development for an optimised solar heat production within the entire district heating system of the Stadtwerke Düsseldorf AG
  • Activities for international collaboration

Results

The result of the SWD.SOL project is to demonstrate the technical and organisational feasibility of the concept of decentralised feed-in of solar heat into existing district heating networks using a real pilot installation. Especially high temperatures and pressure levels are considered.

Decentralised heat supply from renewable energies into the CHP based district heating network of the Stadtwerke Düsseldorf AG

Downloads and links
Final Report SWD.SOL (German)

SWD.SOL at the 14th CHP Symposium

Paper “Decentralized Solar Feed-in” at the EuroSun 2018

Contact
Thomas Schmidt
schmidt@solites.de

This project has received funding from

The sole responsibility for the content of this webpage lies with the authors. It does not necessarily reflect the opinion of the funding organization. Neither the funding organization nor the author are responsible for any use that may be made of the information contained therein.

PITAGORAS

2019-08-05T15:17:55+02:00Nov 27th, 2018|

PITAGORAS

Sustainable urban planning with innovative and low energy thermal and power generation from residual and renewable sources

Subject

  • Storage
  • Energy efficiency
  • Energy supply
  • District heating
  • Industrial waste heat
  • Energy concept

Task

  • Research
  • Pilot project

Funding

  • Public funds

Period

11/2013 – 10/2017 (4 years)

Budget

about 5.02 m. EUR

Description

Within the EU, cities are responsible for about 70 % of the overall primary energy consumption, and this share is expected to increase to 75 % by 2030. There is no doubt that cities represent simultaneously a challenge and an opportunity for climate change policy. The development of low energy solutions for thermal energy supply to cities is one of the main needs nowadays.

One of the sources with the highest potential is the recovery of waste heat. Industries are throwing away large amount of energy. It is said that as an average value, a 40 % of the consumed energy in industries is waste heat.

The PITAGORAS project focuses on the efficient integration of city districts with industrial parks through smart thermal networks. Technologies and concepts for low and medium temperature waste heat recovery, considering as well integration with renewable energy sources (RES), and heat (and power) supply to cities will be developed and demonstrated.

As many of the technologies and concepts considered in the PITAGORAS project are not yet widely regarded as a reliable heating energy source (even they are already proven technologies), the application of these measures often fail even before cost issues are discussed. To change this negative view best practice projects are essential. In this context, the demonstration plant that has been built in a steel mill and is currently being monitored is essential.

Client

EU FP7-ENERGY-Smartcities-2012
ENER/FP7EN/314596 PITAGORAS

Partner

  • Steinbeis Research Institute Solites
  • FUNDACION TECNALIA RESEARCH & INNOVATION (ES)
  • S.O.L.I.D. Gesellschaft für Solarinstallation und Design mbH (AT)
  • ACCIONA Infraestructuras SA (ES)
  • BIOS Bioenergiesysteme GmbH (AT)
  • Aermec SpA (IT)
  • INGETEK SISTEMAS SA (ES)
  • CIM-mes Projekt Sp. z o.o. (PL)
  • Forsteel S.r.o. (CZ)
  • SISTEMES AVANCATS DE ENERGIA SOLAR TERMICA SCCL – AIGUASOL (ES)
  • Solar.nahwaerme.at Energiecontracting GmbH (AT)
  • O.R.I. Martin – Acciaieria E Ferriera Brescia S.p.a. (IT)
  • City Graz (AT)

Aim

The overall objective of the project is to demonstrate a highly replicable, cost-effective and high energy-efficient large scale energy generation system that will allow sustainable urban planning of very low energy city districts.

Implementation

Within the project, the following systems and concepts will be developed:

  • Waste heat recovery system for electric arc furnaces
  • Organic Rankine Cycle for heat and power generation
  • Seasonal thermal energy storage system
  • Large scale solar thermal energy integration into industrial energy generation system
  • Innovative tools for efficient energy management of the system

The concept of the project is being demonstrated at Brescia (Italy) in a steel mill. Medium/high temperature waste heat (≈ 600 ºC) is recovered from the fumes of an electric arc furnace (EAF). An ORC-unit (2,1 MWe) was installed for power generation in the summer season. In winter season, waste heat (10 MWth) from the fumes of the EAF is supplied to the local district heating network.

A case study was designed to use solar heat for water removal from raw oil at an oil exploration plant in Kremsmünster in Austria. A large scale solar thermal plant (≈10.000 m²) with seasonal thermal energy storage (≈ 4 x 60.000 m³ of oil tanks) are included in the design. The system would also supply solar heat to an existing district heating network of the nearby city.

Solites is integrated in the PITAGORAS project mainly to lead and work in the scientific work package with a focus on solar thermal, seasonal thermal energy storage, overall system development and simulation. In addition, Solites consults the monitoring of the demonstration plant in Brescia and supports dissemination activities.

Results

PITAGORAS develops concepts for the utilization of industrial waste heat and solar heat for the heat and power supply of the industrial system itself and the additional feed-in of heat in district heating networks.

Downloads and links
www.pitagorasproject.eu

Contact
Dirk Mangold
mangold@solites.de

This project has received funding from

The sole responsibility for the content of this webpage lies with the authors. It does not necessarily reflect the opinion of the funding organization. Neither the funding organization nor the author are responsible for any use that may be made of the information contained therein.

EnWiSol

2019-05-07T09:23:32+02:00Nov 27th, 2018|

EnWiSol

Participation in the research EnWiSol project of the Fraunhofer Institute for Solar Energy Systems: Scientific-technical accompaniment of the pilot plant Gutleutmatten

Subject

  • Solar thermal energy
  • Energy supply
  • District heating
  • Market & policy
  • Energy concept
  • Pilot plant

Task

  • Consulting
  • Knowledge transfer
  • Pilot project

Funding

  • Public funds

Period

06/2013 – 05/2017 (4 years)

Budget

n/a

Description

Scientists of Solites accompanied the realization of the pilot plants for solar assisted district heating systems since the mid-90s. Several research projects in the research programs Solarthermie-2000 and Solarthermie2000plus deepened the findings from the realization of the pilot plants.

Solites is involved in the research project “EnWiSol” to bring in the pilot project “Gutleutmatten” especially the experience in the development, simulation, design, construction and operation of the already realized pilot projects. This support includes the innovative, eligible plant and project development parts. Furthermore, the results of the research projects of Solites, namely SDHplus, UrbanSolPlus and Dezentral will be matched with the research project “EnWiSol”.

Client

Fraunhofer Institute for Solar Energy Systems (FhG-ISE), Freiburg, Germany

Partner

  • Steinbeis Research Institute Solites
  • Fraunhofer Institute for Solar Energy Systems (FhG-ISE)
  • badenova Wärmeplus GmbH & Co. KG

Aim

Solites supports the project partners FhG-ISE and badenova and their contractors in the concept development, realization and the specification of operation strategies for the pilot project Gutleutmatten and in the development and implementation of the monitoring concept.

Implementation

Solites supports the project partners FhG-ISE and badenova and their contractors with simulations and participation in project meetings, consultation of scientists and planners, review of technical documents, inspection of the pilot plants during construction, etc. according to the needs on site.

Results

Scientific and technical support for the pilot project Gutleutmatten of the Fraunhofer Institute for Solar Energy Systems ISE and the badenova WärmePlus GmbH & Co. KG in Freiburg, Germany.

Participation in the research project EnWiSol of the Fraunhofer Institute for Solar Energy Systems in the work package for scientific-technical accompaniment of the pilot plant Gutleutmatten.

Downloads and links

Contact
Dirk Mangold
mangold@solites.de

This project has received funding from

The sole responsibility for the content of this webpage lies with the authors. It does not necessarily reflect the opinion of the funding organization. Neither the funding organization nor the author are responsible for any use that may be made of the information contained therein.

Go to Top